(UPDATED) Tutorial 001: Blinking LED

Tinusaur Tutorial 001 schematics

Our first tutorial Tutorial 001: Blinking LED (that’s the older one) was just updated and put under the Tutorials menu.

This is very simple tutorial that shows how to connect a LED to the Tinusaur board and write the “Hello World” of the microcontrollers – very simple program that makes a LED to blink.

Since the Tinusaur board is a very standard ATtiny breakout board this could be applied to almost any other board that has ATtiny microcontroller.

The code was tested to work with ATtiny13, ATtiny25, ATtiny45 and ATtiny85 but will probably work with other microcontrollers too.

Please go to the Tutorial 001: Blinking LED x1 page to see the full document.

 

Advertisements

WinAVR – Setup Guide

WinAVR is a great tool to do development for Atmel AVR micro-controllers on Microsoft Windows platform. It consists of all the necessary C/C++ compiler, linkers and other GCC tools that you need to write, build and program those micro-controllers.

WinAVR: http://winavr.sourceforge.net

WinAVR
WinAVR (pronounced “whenever”) is a suite of executable, open source software development tools for the Atmel AVR series of RISC microprocessors hosted on the Windows platform. It includes the GNU GCC compiler for C and C++.

Here we have put together very short guide how to setup and use WinAVR for programming the Attiny85 micro-controller and the Tinusaur Board in particular.

The guide was tested mostly under Microsoft Windows 8.1 operating system.

The example source code was tested on ATtiny85 micro-controller installed on a Tinusaur project boards and programmed using USBasp ISP programmer.

Please go to WinAVR – Setup Guide page to read the entire document.

 

 

Assembling Guide

This a short guide about how to assemble the Tinusaur Board.

Tinusaur Board

The Tinusaur Board is what the Tinusaur project is built around. It is rather simple PCB with a dozen components on it.

The board is easy to assemble and does not require very special skills or instruments.

IMPORTANT: If you are uncertain about anything please consult with our website, community or someone more knowledgeable in the subject.

Tinusaur PCB design and layout

There are 4 areas that the Tinusaur board could be divided to: A1, A2, A3, A4.

Assembling

Here is the recommended order of soldering the parts:

  1. MCU socket. Note: do not insert the chip yet.
  2. Capacitors C1, C2 and resistor R1.
  3. Headers H1, H2.
  4. External power header – red.
    Battery on/off header – yellow.
  5. ISP header.
  6. Battery holder.
  7. RESET button.

The battery holder and the battery are optional but if you decided to put them on make sure you solder the battery holder before the RESET button.

IMPORTANT:

External power header (JP1, red, the one closer to the 8-pin header H1) is to connect external power. DO NOT put a jumper there – that could damage the board.

Battery On/Of header (JP2, yellow, the one closer to the mount hole) is to connect/disconnect battery to/from the board. DO NOT have this on while the board is connected to the programmer or external power source – there is no circuit to protect the battery from overcharging.

If you’re not going to use an external power source or the battery on the board don’t put any jumper on at all.

Tinusaur Schematics

Board Components

Name

Description

PCB

Tinusaur Board

MCU, Attiny85

Atmel AVR ATtiny85 microcontroller

Socket, DIP-8

DIP-8 socket for MCU

H1, Header

Header 2×4, Female

H2, Header

Header 2×5, Female

ISP, Header

Header 2×5, Male, for ISP

RESET, Button

Tactile push button, for RESET

Power, Header

Header 1×2, Male, red – external power

Battery, Header

Header 1×2, Male, yellow – battery power on/off

Battery, Jumper

Jumper, 2-pin, yellow – for battery power on/off

C1, Capacitor

Capacitor 100uF, Low profile 5×5 mm

C2, Capacitor

Capacitor 100nF, Small

R1, Resistor

Resistor 10K, Small, 1/8W

Battery holder

Battery holder for CR2032

Battery 3V

Battery 3V, CR2032

Note (about external power source): If you’re going to use external power source (JP1, red in color, the one close to the 8-pin header H1) make sure you connect the negative pole (-) to the outer pin of the header and positive (+) to the inner one.

Note (about battery placement): If you’re going to use the battery in the holder make sure you insert it correctly – that is to have the negative (-) downwards (facing the holder) and the positive (+) (the side with the text markings) upwards.

 

This guide as well as other documents are available as PDF at the Guides page. Please note that any updates will be posted there.

Small changes on the board

Some of the people who received the Tinusaur Starter kit wrote us that it isn’t that easy to figure and remember how to put and use the 2 small 2×1 headers for the external power and the battery on/off. So, we decided to make a small change – have those in different colors.

Tinusaur Starter Kit Assembled

PS1 (external power source) is now red.

BS1, BJ1 (battery switch and jumper) are now yellow.

 

Your feedback is really valuable to us.